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Optimal scheduling of traffic over the National Airspace System is computationally dif-
ficult. To speed computation, Dantzig-Wolfe decomposition is applied to a linear integer
programming approach for assigning delays to flights. The subproblems for this decompo-
sition are solved in parallel via independent computation threads. Experimental evidence
suggests that as the number of subproblems/threads increases (and their sizes decrease) for a
given problem, the solution quality, convergence, and runtime improve. A demonstration of
this is provided by using the finest possible decomposition: one flight per subproblem. This
massively parallel approach is compared with one with few threads and with non-decomposed
approaches in terms of solution quality and runtime. Since this method generally provides a
relaxed solution to the original integer optimization problem, two heuristics are developed
to generate an integral solution. Dantzig-Wolfe followed by these heuristics can provide a
near-optimal (sometimes optimal) solution to the original problem hundreds of times faster
than the standard (non-decomposed) approaches. In addition, when massive decomposition
is employed, the solution is shown to be more likely integral, which obviates the need for an
integerization step. These results indicate that nationwide, real-time, high-fidelity, optimal
traffic flow scheduling is achievable for (at least) 3-h planning horizons.

Nomenclature
q dual variable vector
F set of flights
μ(f, j) minimum sector time of flight f in sector j

af air hold time for flight f

ca
f air-holding cost for flight f

c
g

f ground-holding cost for flight f

Di sub-matrix of connecting constraints relating to sub-block i

Fi sub-matrix used to generate subproblem i

gf ground hold time for flight f

l number of subproblems
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m0 number of connecting constraints
Pi the set of feasible solutions to subproblem i

wk
f,t binary variable for sector k, flight f , and time t

I. Introduction

TRAFFIC flow management (TFM) of the National Airspace System (NAS) endeavors to deliver flights from
their origins to their destinations while minimizing delays and respecting all capacities. There are several models

for solving this problem. Some models aggregate flights into flows [1–3] and others consider controls for individual
flights [4–7]. Typically, the latter set of models are computationally difficult to solve for large-scale, high-fidelity
scenarios. One of the more heavily studied aircraft-level models presented by Bertsimas and Stock-Patterson (BSP)
[5] has runtime concerns that should not be overlooked [8–11]. Despite the computational issues, aircraft-level models
are attractive due to their ability to encapsulate important information about the state of the NAS and their ability
to provide detailed control actions targeting specific flights. This highlights the major tradeoff between aggregate
and aircraft-level models: computation time vs solution detail. The BSP model has been the focus or basis of several
other research efforts. As of yet it has not been definitively demonstrated that the model is feasible for “real-world”
implementation due to the computational barrier. Some research efforts deal with tractability by lowering the time
resolution by up to an order of magnitude (15-min time bins) and/or simplifying the airspace (generic sectors, limited
number of airports, etc.) [4,5,12]. It is an open research question as to what time resolution is appropriate for various
planning horizons. Previous work on accelerating solution of the BSP model focused on either decomposing the
problem in time [8] or space [10], or by reducing the number of flights under consideration [9]. All such methods
are rough heuristics for arriving at “good” solutions in reasonable time.

In this paper, a well-known, provably optimal, approach to solving large-scale linear programs (LPs), Dantzig-
Wolfe (DW) decomposition [13], is applied to the BSP model. The DW model is implemented here with varying
degrees of decomposition, from a small number of subproblems to a massively parallel version, wherein each
subproblem represents constraints for only one or two flights. While many others in various application domains [14–
16] have used DW, there is no clear example in the literature for such a high level of parallelism as is accomplished
here. There has been considerable work on applying DW to integer programs [17–19]. In this work, the focus is
solving the relaxation of the master problem using integer solutions to the subproblems. Two different integerization
heuristics are then applied to obtain a final, integer solution. The present massively parallel version is shown to have
positive traits in terms of solution quality, convergence, and overall runtime. By using DW, the computational barrier
to implementing a large-scale, high-fidelity, aircraft-level model may be lowered to the point that future decision
support tools may make use of the model with commercial-off-the-shelf software and hardware. In general, there
has been a considerable interest in the computational qualities of DW for many decades. Ho, for example, reviews
some of them from the 1980s [20] and more recently Tebboth completed a thesis on the topic [21].

This paper is organized as follows: Section II details the BSP model and DW decomposition. Section III describes
the tools and implementation details of this study’s experiments, including a discussion of the integerization heuristics.
Section IV presents the data used in the experiments along with how they were acquired. Then, Section V describes
the experiments performed and their respective results. Finally, Section VI offers concluding remarks, including
potential future research directions.

II. Background
In this section, the BSP model and the DW algorithm are described after a brief discussion of the TFM problem.

The BSP model is a binary integer program that neatly describes the issues associated with TFM (respecting capacities
and schedules). The DW algorithm will allow parallel computation of smaller subproblems such that an optimal,
relaxed solution can be found in reduced time.

A. Traffic Flow Management
The most complete description of the state-of-the-art in TFM is provided by Sridhar et al. [22]. TFM is primarily

concerned with capacities and delays in the NAS. In the most general sense, TFM endeavors to minimize delays in
the system while respecting all capacities. Capacity values implicitly aid in maintaining safety in the system. The key
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inputs to a TFM problem are typically demand and capacity forecasts. Estimating demand and capacity are active
areas of research.

There are several modeling choices that define the particular TFM problem to be solved. For aircraft-level models,
Bertsimas describes a taxonomy of models [5], which are categorized according to parameters such as whether
uncertainty is considered, whether air holding and/or rerouting of flights is allowed, and how many airports may be
involved in the problem.

For this research, individual aircraft is considered along with every sector and airport in the NAS. Rerouting is not
considered, but air holding is allowed. The input data are considered to be deterministic. A more precise description
of the TFM problem addressed in this research is described in the next section.

B. BSP Binary Integer Program
The BSP model [5] is used to perform scheduling that minimizes delay costs. The model as presented by BSP is

given below:

Minimize:
∑
f

[cg

f gf + ca
f af ]

Subject to:
∑

f :P(f,1)=k

(wk
f,t − wk

f,t−1) � Dk(t), ∀k ∈ Airports, t ∈ Time (1)

∑
f :P(f,last)=k

(wk
f,t − wk

f,t−1) � Ak(t), ∀k ∈ Airports, t ∈ Time (2)

∑
f :P(f,i)=j,P (f,i+1)=j ′

(w
j

f,t − w
j ′
f,t ) � Sj (t), ∀j ∈ Sectors, t ∈ Time (3)

w
j ′
f,t+μ(f,j) − w

j

f,t � 0, ∀f ∈ F, j = P(f, i), j ′ = P(f, i + 1) (4)

w
j

f,t − w
j

f,t−1 � 0, ∀f ∈ F, j ∈ (f ’s flight path) (5)

w
j

f,t =
{

1, if flight f arrives at sector j by time t ,

0, otherwise.

The air and ground delays (af and gf , respectively) for each flight f are ultimately expressed in terms of binary
variables, wj

f,t , through a substitution for af and gf , which is fully described in the original paper [5]. For each flight,
the model is able to decide whether the flight needs to be held anywhere (and for how long) in order to satisfy the
airport departure, airport arrival, and sector capacity constraints (constraints (1), (2), and (3), repsectively). Airports
are denoted by k and sectors by j . Each of the capacities is a function of time, t . Each flight in the set of flights, F , is
described as an ordered list of distinct sectors, j , from a set of sectors, J , with earliest and latest feasible entry times
for each of those sectors. For modeling purposes, airports are considered a subset of sectors with associated arrival
and departure capacities. A sector in a flight path is denoted by P(f, y), where f is the flight and y is the ordinal
representing its place in the flight path. For ease of notation, P(f, last) is used to represent the last sector (usually an
airport) in f ’s path. The parameters c

g

f and ca
f are the costs of holding f on the ground or in the air, respectively, for

one unit of time. The original model, as published, also contained a set of constraints to represent connecting flights.
Those constraints are relaxed here.

The problem is also constrained by the physical and temporal limitations of the flights. Specifically, each flight
spends, at least, the specified minimum sector time, μ(f, j), in each of its sectors, j , as described by constraints (4).
Coupled with the set of constraints enforcing the logic of the variables, i.e., all 0’s before all 1’s (constraints (5)),
physical and temporal logic is satisfied.

A high resolution (1-min accuracy) is used in this paper. In addition, an accurate model of the airspace used is
complete with all airports and en-route sectors. Recall that the computational complexity of the model can be reduced
by lowering the resolution (using, say, 15-min time bins) or considering only a subset of airports.
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C. DW Decomposition
DW is a decomposition method for LPs of block angular form (this special form is described in some detail in

Section B). Borrowing some notation from Bertsimas and Tsitsiklis [23], noting that bold variables represent vectors
and capital letters represent matrices, begin with a LP of the form:

Minimize: c′
1x1 + c′

2x2 + · · · + c′
lxl (6)

Subject to: D1x1 + D2x2 + · · · + Dlxl= b0 (7)

F1x1= b1 (8)

F2x2= b2 (9)

...

Flxl = bl (10)

where {xi |i ∈ [1 . . . l]} are the decision variables.
Assuming each set Pi = {xi � 0|Fixi = bi} is bounded,‡ each Pi can be described as a convex combination of

its extreme points. Let Ji be the set of extreme points for subproblem i and denote individual extreme points as
xj

i , j ∈ Ji . It follows that xi = ∑
j∈Ji

λ
j

i xj

i where
∑

j∈Ji
λ

j

i = 1 and λ
j

i � 0 for all i, j . Given this description of xi , a
substitution can be made into the LP described in Eqs. (6)–(10) resulting in the following so-called master program:

Minimize:
l∑

i=1

∑
j∈Ji

λ
j

i c′
ix

j

i

Subject to:
l∑

i=1

∑
j∈Ji

λ
j

i Dix
j

i = b0

∑
j∈J1

λ
j

1 = 1

∑
j∈J2

λ
j

2 = 1

...∑
j∈Jl

λ
j

l = 1

where {λj

i |∀j ∈ Ji, ∀i ∈ [1 . . . l]} are the decision variables.
If the original formulation (Eqs. (6)–(10)) had m constraints (rows) and n variables (columns), then the master

formulation has only m0 + l constraints (where m0 is the number of coupling constraints and m0 is typically signif-
icantly less than m depending on the model and problem instance), but an exponentially larger number of columns
since there is a column for each extreme point generated by the sets of constraints illustrated in Eqs. (8)–(10). Notice
that the decision variables in the master program are actually the weights on the extreme points of each Pi .

Since the vast majority of the λ variables are valued zero at any given iteration, most columns are irrelevant to the
master. This leads to the heart of the decomposition algorithm: column generation. Only potentially useful columns
are added to a so-called “reduced master” problem. For each Pi , an independent LP is created. The constraints of

‡ This assumption is not necessary for DW decomposition in general, but it is sufficient for the BSP formulation and simplifies
the mathematical discussion.
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each of those subproblems is simply Pi and the objective function is generated by examining the master problem:

Minimize: (c′
i + q′Di)xi

Subject to: Fixi = bi

(11)

where q is the dual variable vector associated with the connecting constraints, which is made available as usual
through the simplex algorithm applied to the master problem. The master problem, in essence, asks the subproblem
for a variable (column) that will improve the master’s objective function. The subproblem provides a variable with
the greatest reduced cost (described by objective (11)). This is accomplished by minimizing the reduced cost of
all of the master’s decision variables associated with that particular subproblem. The subproblem either provides
such a variable or it indicates that it is unable to provide one that improves the master. The master iterates over all
subproblems until its objective can no longer be improved.When this occurs, it implies that there is no variable/column
that can enter the master’s basis that will improve its objective, thus the current solution is optimal and the algorithm
terminates. Since there are a finite number of corner points for each subproblem and the subproblems are solved with
some form of the simplex method, the DW algorithm is guaranteed to terminate.

The interested reader is directed to the original paper by Dantzig and Wolfe [13] and/or a modern textbook on
linear optimization [23] for details on this decomposition method. For discussions of computational issues associated
with DW, the work of Ho [20,24] is insightful and infomative.

III. DW Implementation of the BSP Model
In this section, the details of implementation of DW are provided. This is followed by a discussion of the suitability

of the BSP model for use with DW. Finally, the heursitics used to move from the relaxed DW solution to a purely
integer solution are described in detail.

A. DW Implementation Details
Assuming there are n subproblems in a DW implementation, at any iteration of the algorithm there are up to

n potential columns to add to the reduced master formulation. One must instate a policy governing which (if any)
of the columns are to be included in the reduced master. Some options include choosing the column(s) with the
greatest reduced cost(s), choosing the first available column(s), or choosing all available columns that will improve
the objective. The implementation for this study accepts all columns with strong potential to improve the master’s
objective (i.e., all columns with negative reduced cost).

Since there will be up to n columns entering the reduced master at each iteration of the DW algorithm, a decision
needs to be made as to what should be done with the columns that exit the basis of the reduced master. This question
is generally one that needs to be answered based on computing resources. If memory usage is (or will become) an
issue, then at some point the non-basic columns (i.e., those with value of zero) should be purged from the reduced
master. If memory usage is not a concern, then there is little to no harm in allowing the non-basic columns to remain
in memory and, therefore, remain part of the reduced master formulation [25]. A benefit to keeping the non-basic
columns is that there is an opportunity to use them later in the important integerization step. How these non-basic
columns may be used in obtaining an integer solution will be discussed in Section C. Since these columns will prove
useful and there were not any issues with becoming memory-bound during these experiments, this study chose to
retain all columns that became part of the reduced master.

The next major implementation issue deals with how the subproblems should be solved. This decision is based on
several factors including coding complexity, computing resources and problem size. Some implementations of DW
may only have a single subproblem and, thus, do not have to be concerned with the decision to solve subproblems
in parallel or serially. To minimize wall clock runtime, solving all subproblems in parallel is more efficient in the
presence of multicore or cluster computers. For this study, all subproblems are launched simultaneously and each
solves completely at each iteration of the DW algorithm as long as the subproblem has a new objective function
for that iteration. The entire implementation is written in ‘C’ and multithreading is achieved through the use of the
pthread library.

Finally, a decision on the form of the variables supplied to the master needs to be made. More specifically, should
the integrality constraints be enforced on the subproblem solutions? This question is intimately tied to the question
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of how integrality is going to be handled in the final solution. As will be discussed in Section C, the heuristics used to
obtain an integral solution will rely on the fact that the subproblems are asked to supply an integer (binary) solution
to the master at each iteration.

B. Block-Angular Form of the BSP Model
As discussed in Section C, an LP needs to exhibit block-angular form in order to become a candidate for DW

decomposition. The BSP model is, indeed, of this form. The capacity constraints are the so-called “connecting”
constraints since they involve variables from many different flights. The groups of flights involved in those capacity
constraints cannot be easily disaggregated. For example, the set of flights which may use some sector at time 21 will
not likely be exactly the same set of flights that use any other sector-time or airport-time pair in the system.

Constraints (4) and (5) are used to generate the independent subproblems. This is due to the fact that these
constraints for each individual flight are independent of those for any other flight. It follows that any collection
of constraints associated with a set of flights is completely independent of the collection of constraints associated
with a mutually exclusive set of flights. Using this insight, any number of subproblems can be generated by simply
grouping all of the physical/temporal constraints associated with distinct sets of flights. More concretely, if 10
subproblems are desired, a list of all the flights within the planning horizon can be divided into 10 distinct lists. Now
all physical/temporal constraints associated with the flights in each list is completely independent of each other set
of physical/temporal constraints. By grouping the constraints in this manner, the constraint matrix of the original
problem is partitioned into independent rows. With the understanding that the ordering of columns within a constraint
matrix is arbitrary, a block angular structure can be extracted from the BSP by re-ordering columns to group flights
based on any desired criteria. To formalize, consider the complete set of flights F partitioned into n sets. For every
i ∈ n, the set of physical and temporal constraints (4) and (5) can now be grouped into a set of constraints, Fi , such
that all of the variables, w, used within those constraints are mutually exclusive of those used within every other set
of constraints, Fj , i �= j (see Fig. 1).

C. Integerization Heuristics
Since DW provides only a relaxed (i.e., not necessarily integral) solution to the original integer formulation, some

method to generate an integer solution from this relaxed solution is required. A significant amount of research has
been directed toward applying DW to integer programs. For example, Vanderbeck has developed methods for binary
and general integer programs [17,18], and mixed integer programs [19]. Concepts from Vanderbeck’s work may be
useful to future studies in the TFM domain, but the work presented here will rely on using the relaxed solution from
DW and applying heuristics to obtain an integer solution rather than explicitly incorporating integrality throughout the
solve process. The assumption in this study is that applying a heuristic at the end of the relaxation solve process will
ultimately be more efficient than other integerization methods. The two integerization methods are now presented.

1. Choose Exactly One
After obtaining a relaxed solution for any problem of at least nominal complexity, the reduced master problem

will likely contain several columns generated by each subproblem. Specifically, if there were i iterations used to
obtain the relaxed solution, each subproblem will have contributed between 1 and i columns to the reduced master.
Since the choice was made to retain all columns that enter the reduced master problem (see Section A), the following
question can be posed: From the generated columns, can the reduced master obtain a feasible solution by selecting

Fig. 1 The block-angular form of the BSP model. Each Fi represents the complete physical and temporal constraints
of a distinct set of flights.
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exactly one of the columns from each of the subproblems? This corresponds to enforcing a binary constraint on the
weights (λj

i , see Section C). So instead of a solution consisting of a convex combination of the columns suggested
by each subproblem, the reduced master must now choose one, and only one, column from each subproblem. This
method is only applicable since integrality is strictly enforced in the subproblems (see Section A).

2. Rounding
A crude, but highly efficient, method for obtaining an integer assignment of variables is to simply round them to

the nearest integer. Within this implementation of DW, integrality of the variables is enforced in the subproblems,
but that integrality may be lost when solving the master problem. This is due to the fact that weights (λj

i , see Section
C) are not necessarily integer. Rounding must be done with the understanding that the feasibility of the solution
obtained by rounding the variables of a known feasible solution is not guaranteed. However, careful examination of
what rounding implies in the context of the BSP model is interesting.

In the BSP model, the physical/temporal constraints should never be broken if the model is to have any basis in
reality. If any of these constraints were to be violated, a flight has, for example, flown across a sector faster than
physically possible or perhaps bypassed a sector completely. It can be easily shown that, given a valid assignment
of variables to satisfy these physical/temporal constraints, the rounded assignment to these variables maintains the
satisfaction of these inequalities. To illustrate, consider the following:

w1 − w2 � 0

w1 � w2 (12)

wr
1 � wr

2 (13)

w1, w2 ∈ [0, 1],
wr

i is the rounded value of wi

If Eq. (12) is satisfied by some assignment of w1 and w2, Eq. (13) can be established via simple enumeration, as
presented here. There are only three scenarios to check, given Eq. (12):

w1, w2 � 0.5 (14)

w1, w2 < 0.5 (15)

w1 � 0.5 and w2 < 0.5 (16)

For the scenario presented in Eq. (14), both variables will be rounded to 1, thus satisfying Eq. (13). Likewise, the
scenario presented by Eqs. (15), both variables will be rounded to 0, and will satisfy Eq. (13). For the final scenario
(Eqs. (16)), w1 will be rounded to 1 while w2 is rounded to 0, which still satisfies Eq. (13). This exposition implies
that constraints (4) and (5) will not be violated if we are given a relaxed solution and decide to round the variables.

The same argument cannot be made for constraints (1) through (3). These constraints represent the maximum
allowable capacity of the various resources. Violating these constraints, however, does not shatter any physical reality
associated with aviation. In fact, in the NAS capacity values are often “violated” in the course of a typical day’s
operation. Decisions are made dynamically by air traffic managers as to whether the violation of a sector’s monitor
alert parameter (MAP) value, for example, will put the system into an unsafe state. This assessment is made based
on several factors including, but not limited to, the sector controller’s experience, weather, and traffic patterns. In
addition to this understanding of capacity constraints, it is clear that there is a large degree of uncertainty in the
air traffic system. With these understandings and the computational costs of solving BSP, it may be reasonable to
provide a solution that violates a small number of capacity constraints if it can be calculated relatively quickly. Thus,
rounding is implemented as an heuristic to measure how quickly the integer solution can be obtained. The resulting
rounded solution is examined to count the number of broken capacity constraints.

D. Tools
All experiments were performed on a dual quad-core Xeon with a clock speed of 2.66 GHz and 32 GB of available

memory. The operating system was Red Hat Enterprise Linux 4. The optimization library used for implementing
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Table 1 Scenario comparison over various optimization tools

Scenario GLPK DW with
(min./capacity) Metric GLPK LP format AMPL/CPLEX CLPEX LP format max. threads

60/100 Runtime (s) 229,610 2294 108 61
Delay cost 477 477 477 477

60/90 Runtime (s) 254,651 3360 1132 72
Delay cost 759 758 759 750

60/80 Runtime (s) 357,483 2576 216 88
Delay cost 1305 1302 1305 1304

60/70 Runtime (s) 6+ days 65,399 61,238 137
Delay cost – 2742 2792 2587

120/100 Runtime (s) – – 460 101
Delay cost – – 1005 997

120/90 Runtime (s) – – 636 139
Delay cost – – 1626 1488

180/100 Runtime (s) – – 1372 189
Delay cost – – 1248 1233

180/90 Runtime (s) – – 2991 313
Delay cost – – 1934 1932

Delay cost is in weighted minutes.

DW was the open source package GNU Linear Programming Kit (GLPK) version 4.34 [26]. Vector and matrix
math operations were performed with the Intel Math Kernel Library version 10.0 [27]. The commercial optimization
package CPLEX version 11.2 [28] was used for the integerization described in Section I and for obtaining solutions
to the standard, monolithic (non-decomposed) versions of the BSP (see Section V). In general, CPLEX outperforms
GLPK by a large margin, but the restrictive licensing of CPLEX prohibited this study from running in the multi-
threaded nature it required. A comparison between GLPK and CPLEX is provided in Table 1. The tool flow is
illustrated in Fig. 2. It is worth noting at this point that the use of a mathematical modeling language is omitted for
optimal runtime performance. Languages such as AMPL or GAMS provide a clean method for describing any LP,
but the computational cost involved in translating that model into data structures used by optimization packages like
GLPK or CPLEX is significant. Table 1 again provides measurements supporting this claim. If runtime is a concern,
then an LP should be described in a more “native” format like MPS or CPLEX’s LP format. For this study, the latter
was used.

IV. Data
A flight data set was chosen such that it represented a typical day with several resources operating at (or potentially

over) capacity, but without any significant influence from poor weather. The ASDI (Aircraft Situation Display to

Fig. 2 The general tool flow used in the experiments. “Monolithic” refers to the original, non-decomposed model.
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Industry) [29] data for Thursday,August 24, 2005, starting at 13:15 UTC (9:15AM EDT) was used for all experiments.
This represents the fairly dense mid-to-late morning traffic on the east coast, as well as the earlier morning rush on the
west coast. This project was focused on only domestic flights so all international traffic were excluded, though their
inclusion would not likely change the runtime or solution quality. Flights through Canadian airspace were retained,
but the Canadian sector constraints were ignored. In addition, a small percentage of flights were omitted. These
mostly included flights that re-entered the same sectors several times or were missing sectors in their flight plans.
Over 90% of all flights were retained after the deletion of international and other flights. The data are considered high
fidelity for this problem domain since the position of each flight is predicted for each minute of the simulation. It can
be noted here that flights which are en-route at the beginning of the planning horizon are included in the formulation.
To accommodate them into the BSP model, they are modeled to “depart” a dummy airport with infinite capacity one
time step before the planning horizon actually begins.

As far as capacity constraints are concerned, any sector or airport that was used by any flight in the system was
included in the data set. This resulted in 974 sectors being included along with 905 airports. Many of the constraints
generated by these resources (see constraints (1) and (2)) were not near their maximum capacity levels and were,
thus, simplified out of the problem formulation. For example, if only a few flights are using Moffett Federal Airfield,
then the capacity constraints generated for the BSP model could never be binding and, thus, could be removed from
the formulation. There was no distinction made between low, high, or superhigh en-route sectors, but Terminal Radar
Approach Control (TRACON) sectors were given special status by allowing them infinite capacity. The basis for this
decision is that the capacity of these sectors is typically driven by the ability of the airports in the TRACON to accept
or depart aircraft and those constraints (again, constraints (1) and (2)) are already included in the formulation.

To extract the data from the ASDI file, the Future ATM Concepts Evaluation Tool (FACET) [30] was used. FACET
is capable of many functions, but for this study, its capabilities of playing back and simulating historical data and
recording statistics were most relevant. Easing the burden of collecting data and controlling simulations was the
FACET Application Programming Interface (API) (based on a research tool called CARAT# [31]). The FACET API
allows the user to interface with FACET through either Java or Matlab code in order to extract information about
elements in the system. The default sector capacities known as Monitor MAPs and airport capacities as stored in
FACET were used for the experiments. If an airport did not have explicit capacities in FACET, a default value of 10
was used for arrival and departure capacity per 15 min.

V. Experiments and Results
The primary measurement for this study is runtime. Secondly, solution quality is closely observed. Several

scenarios were generated from the base data set described in Section IV. These scenarios were generated by varying
two key parameters, planning horizon, and sector capacity. The planning horizon, was varied from 60 to 120 to 180
min. The sector capacity was varied from a nominal value of 100% of MAP value down to a value of 70% throughout
the entire NAS. This series of capacity values are not meant to replicate any particular “real-life” scenario, rather
they were constructed to stress the model and solvers under more and more tightly constrained scenarios. Each
experimental scenario will be referred to by the notation “horizon/cap” where “horizon” is the planning horizon and
“cap” is the percentage of nominal sector capacity available. For all experiments, the maximum allowable lateness
for each flight into each of its sectors is set at 20 min. Any scenario that is run for an n-min planning horizon is
solved with a model with an (n + 20)-min planning horizon to allow all flights in the scenario to reach the final
sector in their flight path for that planning horizon. The overall tool flow for each of the experiments is illustrated
in Fig. 2.

To solve these scenarios, the number of subproblems is varied. Due to an unwieldy experimental matrix, the
selection of the number of subproblems was limited for most planning horizon/capacity pairs. For every planning
horizon/capacity pair, the monolithic version of the BSP was run. In addition, a 256 subproblem instance was run
for each planning horizon. Finally, a 5920, 4252, or 5370 subproblem instance was run for the 60-, 120-, or 180-min
scenarios, respectively. The number of these subproblems was chosen based on the number of flights in the scenario.
For the 60-min scenario, there are 5920 flights in the system. This number is a soft upper bound on the number
of threads that could be run on the available hardware and operating system. For the 120 and 180 min scenarios, a
number of subproblems was chosen such that there were 2 flights per subproblem. There were 8505 flights in the
120 min scenario and 10,741 flights in the 180 min scenario resulting in 4252 and 5370 subproblems, respectively.
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Fig. 3 Results from the 60 min, 100% capacity experiments using the “choose one” integerization heuristic.

For the 60/100 scenario, a larger set of subproblems were attempted. Specifically for that horizon/capacity pair, 16,
32, 64, 128, and 512 subproblems were also attempted. The chosen number of subproblems attempted for all other
horizon/capacity pairs was determined based on the results from the full set of 60/100 experiments (see the results
in Fig. 3).

To clarify, the reason for lower quality solutions in the instances with fewer subproblems has to do with the smaller
search space for the “choose-one” heuristic. With 16 subproblems, for example, forcing a choice of one column per
subproblem after solving the relaxation severely limits the search space for feasible solutions. As the number of
subproblems increases, the complexity of each subproblem is diminished and the search space for the “choose-one”
heuristic is expanded, resulting in solutions that are closer to the relaxed optimal. Specifically, note that with the
maximal number of subproblems (5920 in the 60-min scenario), there are a larger number of simpler columns from
which the “choose-one” heuristic can find a solution.

It is interesting to see the trends for runtime and solution quality so closely related. It is important to note that for
the 60/100 scenario, the optimal relaxed solution was 477. Thus, the 5920 subproblem version of the 60/100 scenario
was able to find an integer solution with the known optimal value while the other runs with fewer subproblems were
not. To obtain the optimal solution using GLPK and a monolithic version of the BSP model will take over 2 days
(229,610 s), while using DW and multiple threads in parallel, the optimal solution is available in 61 s.

To understand the significance of the runtimes, Table 1 illustrates the runtime and solution quality performance of
several optimization approaches to solving the same BSP instances. Several important observations can be made from
this table. The most important result is that DW implemented with GLPK consistently beats the non-decomposed
version running on CPLEX. This bodes well for any future implementation that might make full use of multiple,
parallel CPLEX solvers, or for the financial efficiency of using liberally licensed, open source software. It would be
expected that a DW implementation using CPLEX would significantly outperform the GLPK DW implementation.
Next, the cost of using a mathematical modeling language, instead of a more native format, is quite steep. The
runtimes for AMPL/CPLEX should be compared with the CPLEX LP Format results to see the runtime cost of
mathematical model translation. Finally, the difference in solving power between a standard GLPK installation and
CPLEX is starkly illustrated. Although there is much to be said for the ability to view and modify the source code of
GLPK as well as launch as many instances of GLPK as desired without licensing worries.

With the insight gained from running the 60/100 scenario with several subproblem counts, the remaining (and
more difficult) problem instances were run with 256 subproblems and a “maximum” number of subproblems (a
maximum of 2 flights per subproblem as discussed above). These results indicate that, indeed, the runtime improves
along with the integer solution quality as the number of subproblems increases. Specifically, Table 2 shows the
integer solution quality difference between the 256 subproblem cases and the maximum subproblem cases, while
Fig. 4 illustrates the runtimes of the 256 and maximum subproblem cases.

In the event that solving the integerization problem from the relaxed result takes too long, it is possible to use the
rounding heuristic described in Section II. The longest wall clock time that this heuristic took to complete was 3 s
more than the time it takes to solve the relaxation. After rounding, data were readily available describing how many
constraints were broken and by how much. The full set of results regarding broken constraints was generated for the
60-minute, planning horizon scenarios and is presented in Table 3.

It is important to put the concept of a “broken constraint” into practical perspective. There were a few airport
constraints that were broken by rounding, but the vast majority of broken constraints were sector constraints. In the
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Table 2 DW solution quality comparison

Solution quality
Scenario
(min./capacity) 256 subprobs. Max. subprobs. Difference (%)

60/100 479 477 0.42
60/90 760 758 0.26
60/80 1551 1412 8.96
60/70 3565 3311 7.12
120/100 1008 997 1.09
120/90 1500 1488 0.80
120/80 2704 2638 2.44
180/100 1238 1233 0.40
180/90 1987 1932 2.85

“Max” indicates the maximum number of threads attempted for the scenario. Note the Instances with more threads
always outperform those with fewer.

NAS the occupancy of a sector is sampled every minute. For each 15-min time bin for each sector, that sector/time
pair is considered over-capacity if any of the corresponding occupancy samples is above MAP. By this definition
of capacity violation, sectors are known to go over capacity on a daily basis. The constraint violations counted in
Table 3 are equivalent to the 1-min samples taken in practice. Also, the constraint violations typically are temporally
adjacent sector-time pairs. Thus, often a set of constraint violations will translate to only a single capacity violation as
defined in the NAS if that schedule were to be enacted. For example, in the 60/90/256 case, there were 14 constraint
violations in the integer program when rounding was used as a heuristic, but that translated to only 4 practical
sector capacity violations. For the 180/80/5370 case, there were 195 constraint violations that mapped to, roughly,
34 practical sector capacity violations. Another point on the broken constraints using the rounding heuristic is that
there are 900+ sectors in the NAS. Over a 180-min run, there are twelve 15-min time bins. There are, therefore,
over 10,000 sector-time pairs that have the potential for going over capacity. If a solution can be provided such that
a traffic flow manager need only worry about 34 of them being violated, it is likely that the solution can be useful in
a practical setting. Hunter et al. [32] provide a deeper discussion on the relationship between capacity, occupancy,
congestion, and delay.

Figure 5 demonstrates that when constraints were broken by the use of rounding, they were not broken by much.
The vast majority of constraint violations occurred by going over the bound by a single flight. The fact that the
constraints are not “too” broken, lends further potential for this rounding method to produce solutions that might be
feasible in a practical setting or at least solutions that may provide a basis from which a human traffic flow manager
might make intelligent decisions.
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Fig. 4 Runtime by scenario and number of subproblems. More subproblems lead to shorter runtimes even without
adding CPUs/cores.
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Table 3 The number of broken constraints generated when
applying the rounding integerization heuristic

Horizon/capacity/subproblems Broken constraints

60/100/16 7
60/100/32 6
60/100/64 4
60/100/128 2
60/100/256 3
60/100/512 2
60/100/5920 0
60/90/256 14
60/90/5920 4
60/80/256 27
60/80/5920 11
60/70/256 173
60/70/5920 163

VI. Conclusion
The work presented here demonstrates that for large, aircraft-level TFM problems, DW decomposition is a very

efficient method of obtaining a high-quality solution. In addition, the solution quality and the runtime improve as
the number of subproblems increases. This bodes well for any future decision-support tools for TFM because it is
likely, thanks to a rough translation of Moore’s Law, that the number of CPUs/cores available for use on this problem
will increase faster than traffic density, thus ensuring mostly tractable problems for the foreseeable future. While
the runtime does not halve with each doubling of subproblems, it must be remembered that the machine on which
these experiments were run was bound by its 8-core limit. As more CPUs/cores become available (either through
implementation on a cluster machine or in the future with higher core-count machines), the wall clock runtime will
likely decrease for implementations with more subproblems. This tractability also implies that additional complexity
may be accommodated within the model. Rerouting and uncertainty may be included in future implementations of
the BSP model and solutions may still be achieved in reasonable time.

The results presented here also demonstrate that given an optimal, relaxed solution to a BSP instance, a rounding
heuristic provides a rapid, near feasible solution that may be of some benefit to a traffic flow manager. In addition, it
appears that problem instances wherein a relaxed solution has the same value as an integer solution, rounding will
be unnecessary as DW provides an integer optimal solution when massive decomposition is employed. Joining these
insights and potentially connecting a DW system with other approaches (such as problem-size reduction [9], spatial
decomposition [10], or temporal decomposition [8]) makes it reasonable to state that large-scale, high-fidelity, TFM
problems are likely solvable in real time (i.e., guaranteed solutions in a prescribed amount of time). This insight
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Fig. 5 Histogram over all 60-min scenarios of broken constraints generated by rounding heuristic.
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opens the door to decision support tool developers and researchers to investigate the use of optimal, aircraft-level
models (like BSP model) in future tools.
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